
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
15Oct2001

3. REPORT TYPE AND DATES COVERED
Final 10 Dec 1998 - 30 Dec 1999

4. TITLE AND SUBTITLE

Javelin EPBST Software Development

6. AUTHORS

Stephen J. Dow

5. FUNDING NUMBERS

DAAH01-97-D-R005 D.O. 013

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Alabama in Huntsville
Huntsville, AL 35899

8. PERFORMING ORGANIZATION
REPORT NUMBER

5-20417

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Aviation & Missile Command
Redstone Arsenal, AL 35898

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This task continued work on a new trainer for the Javelin weapon system, called the Enhanced Producibility Basic Skills Trainer (EPBST).

The author's work was part of a team effort which transformed early prototype software into a full implementation of the EPBST

requirements. This report provides an overview of the EPBST software and detailed discussion of the methods used to display

scenes containing terrain and moving targets.

20011206 050
14. SUBJECT TERMS
Javelin, trainer

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
8

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Computer Generated STANDARD FORM 298 (Rev 2-89)
Prescribed by ANSI Std 239-18

298-102

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
15Oct2001

3. REPORT TYPE AND DATES COVERED
Final 10 Dec 1998-30 Dec 1999

4. TITLE AND SUBTITLE

Javelin EPBST Software Development

6. AUTHORS

Stephen J. Dow

5. FUNDING NUMBERS

DAAH01-97-D-R005 D.O. 013

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Alabama in Huntsville
Huntsville, AL 35899

8. PERFORMING ORGANIZATION
REPORT NUMBER

5-20417

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Aviation & Missile Command
Redstone Arsenal, AL 35898

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This task continued work on a new trainer for the Javelin weapon system, called the Enhanced Producibility Basic Skills Trainer (EPBST).

The author's work was part of a team effort which transformed early prototype software into a full implementation of the EPBST

requirements. This report provides an overview of the EPBST software and detailed discussion of the methods used to display

scenes containing terrain and moving targets.

20011206 050
14. SUBJECT TERMS
Javelin, trainer

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
8

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Computer Generated STANDARD FORM 298 (Rev 2-89)
Prescribed by ANSI Std 239-18

298-102

PLEASE CHECK THE APPROPRIATE BLOCK BELOW

DAO#
□ copies are being forwarded. Indicate whether Statement A, B, C, D, >E, F, or X applies.

0^ DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

D DISTRIBUTION STATEMENT B:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

ONLY; (indicate Reason and Date). OTHER REQUESTS FOR THIS
DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office). {

f

D DISTRIBUTION STATEMENT C: j
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND

THEIR CONTRACTS (Indicate Reason and Date). OTHER REQUESTS
FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office), r t

G DISTRIBUTION STATEMENT D:
DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS

ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO
(Indicate Corrtiollüig DoD Office). \

D DISTRIBUTION STATEMENT E:
DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (Indicate

Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).

D DISTRIBUTION STATEMENT F:
FUTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office

and Date) or HIGHER DoD AUTHORITY.

D DISTRIBUTION STATEMENT X:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

AND PRIVATE INDIVIDUALS OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED
TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE 5230.25. WITHHOLDING OF,
UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE, 6 Nov 1984 (indicate date of
determination). CONTROLLING DoD OFFICE IS (Indicate Controlling DoD Office).

(
Q This document was previously forwarded to DTIC on (date) and the j

AD number is .

G In accordance with provisions of DoD instructions. The document requested is not supplied because:

Q It will be published at a later date. (Enter approximate date, if known). {

Q Other. (Give Reason) »>

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven distribution
statements, as described briefly above. Technical Documents must be assigned distribution statements.

Shpkn T< DM : '
'rint or Type Name

^4 f$yj & #d 26ÖI art - *z¥-6> ¥ü&
Authorized Signature/Date Telephone Number

Javelin EPBST Software Development

Stephen J. Dow
Department of Mathematical Sciences

The University of Alabama in Huntsville

October 15, 2001

Final Report

F/DOD/ARMY/AMCOM/Javelin EPBST Software Development
DAAH01-97-D-R005 D.O. 13

Period of Performance: 12/10/98 to 12/30/99

1. Introduction

This task continues work on the development of a new trainer for the Javelin weapon system, called

the Javelin Enhanced Producibility Basic Skills Trainer (EPBST), which superceeds a prior generation trainer

simply called the Basic Skills Trainer (BST). The period of performance of this task encompasses the core

development period during which a team effort transformed early prototype code into a full implementation of

the EPBST requirements.

Javelin is a shoulder-launched antitank missile. Both the BST and EPBST include (1) an instructor

station, which performs the processing to generate and display a terrain scene with simulated targets, and (2) a

simulated command launch unit (SCLU), which the student gunner manipulates as he or she would the actual

Javelin weapon system to engage targets. Whereas the BST instructor station incorporated custom proprietary

graphics hardware to display rather artificial-looking terrain scenes, the EPBST uses standard Personal

Computer (PC) technology to display photographic terrain scenes with targets rendered from 3D models.

The project to develop the EPBST was split into hardware development to be performed by ECC

International Corporation and software development to be performed by the Software Engineering Directorate

(SED) of the US Army Aviation and Missile Command. The author's work under this task was part of the

software development project, a team effort performed by SED personnel, the author, and other contractor

personnel. Thus this document summarizes work performed by various contributors. It should also be noted

that various other documentation for this project exists within the SED organization.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

2. System Architecture

The major components of the EPBST software are illustrated in the System Architecture Diagram

below, which has been reproduced from the EPBST Software Requirements Specification.

/ Raw Terrain Images /

Path
Editor

Exercise
Generation
Workstation

Student Station

SCLU

SIC Commands
—*;

~y Terrains

"y Targets

t *7 Paths

Data Flow

Instructor Station

SIC Commands

To SCLU

Figure 1: EPBST System Architecture

As shown in the diagram, the software mainly falls into two large groupings, Workstation and

Instructor Station. The Workstation software is used offline, prior to training sessions, to create the terrain,

target, and path data needed during those sessions. The Instructor Station software is what runs during training

sessions, to set up the training exercises, run the simulation (communicating with the SCLU), record scoring

data, manage student records, etc. The Workstation software is used only by personnel at SED facilities,

whereas the Instructor Station software is fielded to various training locations.

Versions of two of the main Workstation components, Range Finder and Path Editor, have been

documented in the final reports of previous tasks by this author. The present report will focus on components

of the Instructor Station software.

3. EPBST Driver

The Driver is the EPBST software module through which the user controls the execution of all the

other instructor station software modules. The Driver executable file is named menu.exe. In addition to

handling the startup of the other modules (diagnostics.exe, exedit.exe, tsim.exe, replay.exe), the driver program

displays the menus for student sessions and incorporates the logic for scoring exercises and handling student

records. The four main buttons on the EPBST main menu are:

Button Function

DAILY READINESS CHECK

JAVELIN TRAINING

EXERCISE EDITOR

IR TRAINING

Start diagnostics.exe

Display student handler dialogs

Start exedit.exe

Start IR Training executable

Three of the four buttons, all except the JAVELIN TRAINING button, serve simply to start a separate

executable program. The Driver (menu.exe) enters a wait mode until that other program exits, at whic"h point

execution returns to the Driver and the main menu appears again.

The JAVELIN TRAINING button serves to enter the student handler portion of the EPBST, which

includes the dialog boxes for creating or loading a student record, for displaying a student session, and for

displaying the score and critiques for a particular exercise the student has trained on. Those dialogs have

buttons used to start tsim.exe ("START SELECTED EXERCISE") or replay.exe ("VIEW REPLAY"). The

Driver also contains the code which displays the briefing screen prior to the start of an exercise. Interprocess

communication between menu.exe and tsim.exe allows the briefing screen to appear while the simulation data

is being loaded.

4. Exercise Editor

An EPBST Exercise consists of a terrain, a set of target paths across that terrain each with a specified

target model to travel along that path, and additional parameters such as weather condition, number of available

rounds the gunner will have, etc. A data file, named est. dat, stores the exercise information and is used by

several EPBST modules, including the Driver, Trainer Simulation, and Exercise Editor. Only the Exercise

Editor modifies the file however. The Exercise Editor allows the user to create new exercises, modify existing

exercises, and copy exercises between EPBST workstations. The exercises are organized into directories; new

directories may be created within the Exercise Editor. Some of the delivered directories are designated as read-

only; exercises in those directories cannot be modified or deleted using the Exercise Editor. However these

exercises may still be loaded into the Exercise Editor, and modified versions of them may be stored in other

directories.

5. Trainer Simulation

The Trainer Simulation (TSIM) is the software module which actually runs the simulation, sending

video and audio to the SCLU for the gunner to see and hear, receiving data from the SCLU corresponding to

gunner aimpoint motion and switch input, and responding appropriately to simulate the behavior of the Javelin.

This module corresponds to the program executable tsim.exe. It handles all aspects of generating the video

with real time panning and target movement and audio sound effects needed to produce the simulation. Other

software modules are responsible for setting up the data needed to start up the simulation; thus on startup

tsim.exe enters directly into the simulation mode, all interaction with the instructor to set up exercise

parameters, etc having already occurred. When the simulation is complete or is aborted, tsim.exe exits and

software control returns to the Driver module.

Except for the message areas at the bottom of the screen, which are masked out so that the gunner does

not see them, the display presented to the gunner is the same as that shown on the the instructor station screen.

The display consists of the terrain scene with targets and overlaid symbology, surrounded by icons which

indicate the system state.

TSIM performs some of its display logic in our own C code and some using DirectX hardware

support. An overview of the logic for rendering 3D target models and inserting them into the terrain scene has

been given in the previous report entitled "Trainer Software Development." Here we will discuss the

subsequent display logic for composing all elements that appear on the screen.

Terrain Image Buffer

Scene Buffer

-Xrr^

DirectX Texture Surfaces

0
®

i r
DirectX Target

Rendering Buffer

"^5323^

Rendered Target Buffers

^uS7

© DirectX Offscreen Surface 0 DirectX Offscreen Surface 1

Screen

Icon Display Area ©

Figure 2: Display Path Diagram

At initialization several offscreen DirectX surfaces (chunks of video memory) are allocated:

(1) one texture surface for each target to hold its texture images;

(2) a rendering surface where the target (without terrain) is rendered;

(3) two offscreen surfaces ("Surface 0" and "Surface 1") for construction of the final display.

Since these surfaces are in video memory, their data is in the pixel format of the screen, which is 16-bit "high

color" for TSIM. In addition to the DirectX surfaces there are image buffers allocated in system memory to

hold

(4) the original terrain images;

(5) texture images;

(6) the rendered target images;

(7) the portion of the scene currently being updated;

(8) seeker image data.

The Display Path Diagram below has boxes indicating the various DirectX surfaces and image buffers, except

for items 5 (texture images) and 8 (seeker image data) above. The Javelin system has several viewing modes: a

visible spectrum mode (DAY), wide field-of-view infrared (WFOV), and narrow field-of-view infrared

(NFOV). Three separate terrain images are held in memory to be used for these modes, the terrain image

buffer in the diagram represents whichever of those three is currently in use. During target engagement the

gunner enters a fourth viewing mode in which the image presented is from the missile seeker; the software uses

the NFOV image buffer to construct the displayed image in seeker mode.The WFOV image has the same

resolution as the visible image; NFOV has twice the resolution in each of X and Y. Also during initialization,

all the texture images used by all the targets in the exercise are read from disk into system memory buffers.

Each texture image is copied into a portion of the DirectX texture surface assigned to a given target. When

switching between DAY and one of the night viewing modes, the texture images are swapped out, so that the

proper images for the current viewing mode are in the DirectX surface.

Let's call the rectangular portion of the screen where terrain and targets appear the "display rectangle."

In the code, this is either display_rect or seeker_rect, depending on the viewing mode. The sequence

of steps used to fill this rectangle with the proper imagery are numbered 1-6 in the Display Path Diagram.

Step 1 represents the rendering of a target from its VRML vertex data and texture data into the DirectX

rendering surface. That surface then contains a single target rendered on top of a background color, which is

specified as a color (currently a fixed shade of purple) we do not expect to occur within the target. Immediately

after rendering, the result is copied from the rendering surface into the system memory buffer for that target

(Step 2 in the diagram). In the code, steps 1 and 2 occur within a call to EstRenderTarget (which in turn calls

Dx functions to perform the rendering and transfer the data).

The function EstUpdateTargets loops through all the targets in the exercise, calling EstRenderTarget

for each one that it deems to be in need of an updated rendering. EstUpdateTargets also maintains each target's

current rectangle in terrain pixel coordinates and its current range. It also computes the current frame and

update rectangle for any active video clips (used for example to display the explosion when a target is hit).

Step 3 represents the construction of a portion of the scene containing terrain and possibly one or more

targets. In the code this occurs in the function EstDrawSceneRect. It first copies the specified rectangle of

terrain into the scene buffer; then it overwrites pixels where targets or animation frames appear using data from

the corresponding target or animation buffers. This latter step is handled by a z-buffer algorithm; i.e. a range

buffer for the update rectangle is initialized with terrain ranges; then it loops through the targets, copying non-

background target pixels to the scene buffer when the target range is smaller than the corresponding value in

the range buffer. Then active animations are drawn; alpha values are used to merge the animation pixel value

with the underlying terrain/target pixel value. When applicable (i.e. WFOV or NFOV viewing modes), the

contrast/brightness mapping and focus processing are applied to the resulting scene buffer during this step.

Step 4 represents transfer of the scene buffer just constructed to the first DirectX offscreen surface,

Surface 0, which contains what's currently on the screen within the display rectangle, except for the overlay

symbology (day stadia, crosshairs, trackgates, etc). This occurs within TsUpdateTerrainRect, when it calls

DxCopyBmpToSurface, except in seeker mode, which is discussed separately below.

Step 5 represents copying the image from Surface 0 to Surface 1 and adding the overlay symbology.

Step 6 is just a direct copy of the data in Surface 1 to the center portion of the screen. Steps 5 and 6

occur in TsUpdateScene.

Additional processing occurs at Step 4 of the display logic when in seeker mode, to simulate the 64 x

64 resolution of the seeker. In seeker mode the dimensions of the display rectangle are xview = 230 and

yview = 227. Three additional system memory buffers are allocated at initialization for use in seeker mode

only. One, named seeker_pix_lo, is a 64 x 64 pixel buffer. The other two, named seeker_pix_hi

and seeker_pix_d, have the dimensions xview x yview of the display rectangle. At Step 4 of the

display path, instead of directly transferring the scene buffer constructed by EstDrawSceneRect into DirectX

Surface 0, the data is first copied into seeker_pix_hi. That data is resolution-reduced by averaging small

blocks of pixels to form each pixel of seeker_pix_lo and then stretched by pixel replication to create

seeker_pix_d. The resulting data is then copied into DirectX Surface 0 for use in steps 5 and 6 as in

before.

The code is structured so that a typical pass through the TSIM main loop (TsProcessFrame) requires

only small portions of the display rectangle to be constructed by EstDrawSceneRect. The main causes for

updates are target movement, active animations, and panning (changes to the line-of-sight). Within each main

loop iteration, the rectangles which need to be updated due to target movement or animation changes are

recorded, as well as those rectangles along the edge of the scene which come into view due to panning. If there

are no changes such as a change in viewing mode which would require an update of the entire display, then the

individual rectangles are passed to EstDrawSceneRect separately. The data already in DirectX Surface 0 or

seeker_pix_hi from the previous iteration is shifted according to the new line-of-sight, and the

individually scene patch rectangles are constructed and copied into DirectX Surface 0 or seeker pix hi as

described earlier. A single call to TsUpdateScene at the end of the loop iteration then handles the remaining

seeker buffer processing and steps 5 and 6.

6. Replay

When the trainer simulation program (tsim.exe) exits, it writes a file containing a log of events that

occurred during the running ofthat exercise, including all the line-of-sight changes, gunner switch inputs such

seeker and fire trigger pulls, missile launches and target kills, etc. The file is stored in the epbst\bin

directory with filename ai . log. This file is then used both by the driver program for scoring and by the

replay program to replay the exercise.

When control returns to the driver program, it reads the file, computes a score, and generates critique

messages. The score and critiques are displayed on the score dialog, which has "Okay" and "Cancel" buttons at

the bottom. If the instructor hits the "Okay" button, the file ai.log is moved to the epbst\replays directory

and renamed student_name_XX_YY. log, as explained below. This file is henceforward used only for

replays; the scoring information which was computed is stored in the student record on floppy disk.

The replay filename student_name_XX_YY. log is constructed as follows: student_name is the

student name as given in the student record, except with each space replaced by an underscore. YY is the

exercise number (as it exists at the time the exercise is run), numbers bigger than 99 are coded as a two letter

combination. XX are two additional characters chosen so that (1) the full filename above does not match an

existing file in the replays directory, and (2) the four characters XXYY together do not match an existing replay

id in this student's record.

The four characters XXYY are together called the replay id, and are stored in the student record along

with the other information for the given exercise such as the score. If the student has previously attempted the

current exercise, so that an existing replay id is found in the student record, then that same id is maintained,

causing the previous replay file to be overwritten (if the attempt was on the same instructor station and the file

still exists). If two students have the same student_name and are alternating use of the same instructor station,

the XX part of the file names will keep them separate.

Whenever a replay file is about to be stored (i.e. moved and renamed from where tsim stored it), the

disk usage of all *.log files in the replays directories is checked, and if it is greater than a preset limit (50 mb),

replay files are deleted (oldest first), to bring the total disk usage back below the limit. This occurs after the

above name determination.

The VIEW REPLAY button on the student session dialog is enabled or disabled based on whether

there is a corresponding replay file for that student and exercise in the replays directory.

